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Dynamics of a polymer chain in an elongational flow
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The configurational and rheological properties of a flexible polymer chain in an elongational flow are studied
analytically. To take into account the finite extensibility of a linear chain molecule, we apply the constraint of
a fixed contour length, which leads to deformation dependent force coefficients. For the steady state, the
distribution and partition functions are calculated using the maximum entropy approach. A comparison of our
predictions for the strain rate dependence of the deformation and the intrinsic viscosity with computer simu-
lations yields good agreement. Furthermore, we analyze the dynamics of the polymer chain for different
nonequilibrium initial conformations by solving the Langevin equation. In this case the time to approach the
steady state depends upon the chosen initial conformation.

PACS numbds): 61.25.Hq, 36.20.Ey, 83.10.Nn

I. INTRODUCTION are only applicable for the calculation of steady state prop-
erties of a chain.

The behavior of dilute polymer solutions in an elonga- In this paper we present an analytical description of the
tional flow has been an outstanding problem in polymer scisteady state as well as non-steady-state properties of a poly-
ence for several decadgk—6], both from experimental and Mer chain in an elongational flow. In particular, we take into
theoretical points of view. The velocity gradient along theaccount the finite chain extensibility by constraints. The hy-
direction of flow can stretch the polymer far from its equi- drodynamic interaction is neglected in the following calcula-

librium configuration. Due to the extension, the polymer ex-tion. Its influence on the chain conformations and dynamics

erts a force back on the solvent that leads to important non%ill be discussed in a future publication. In addition, the
xcluded volume interaction is neglect&ske the comment

Newtonian properties of the solution such as turbulent dragb c _ f its with X iUl
reduction or enhancement of the solution viscofity]. For . ove)._ omparisons of our resufts with computer simula-
tions will be presented. In particular, our method allows one

a theoretical description, the hydrodynamic interaction med|—to calculate the residence time dependence of the mean

ated by th? solvent Co”?b'”ed with the nonequilibrium stgte qguare end-to-end distance for different nonequilibrium ini-
of the cham_ causes major p“’b'e”."s- Thu;, for.an analytlcq al conformations. Predictions for this dependence for ini-
approach, simple models are required which still capture thg, v coiled or stretched chains, respectively, are in good
basic features of a polymer chain. Many theones use th%greement with recent computer simulatihe, 17). Our re-
Rouse model or the dumbbell model to describe the polymegjis show that the time to approach the steady state depends
chain. The major advantage of these r_nodels is analyticalpon the chosen initial conformation.
tractability, although they possess major drawbacks t00, The paper is organized as follows. In Sec. Il the chain
since all nonlinear effects like the finite extensibilly,8—  model is described. In Sec. Il the steady state properties are
10] or the hydrodynamic interactiori1-13, as well as the discussed. The strain rate dependence of the mean square
excluded volume interaction, are neglected. The three abowend-to-end distance and the intrinsic viscosity are calculated
mentioned effects differ in their importance for the confor-and compared to the predictions of computer simulations. In
mational and rheological properties of a polymer chain in arSec. IV we outline our approach to calculate the nonequilib-
elongational flow. Due to the extension of a chain by therium dynamics of the polymer chain in an elongational flow.
flow, the finite extensibility of a real polymer chain is of Solutions of the equations of motion are presented for two
fundamental importance for the actual conformation of thedistinct nonequilibrium initial conformations of the chain
chain because it yields a serious constraint for the deformdcoiled and stretchedand are compared with computer
tion of the chain. On the other hand, the influence of thesSimulations. Finally, Sec. V summarizes our results.
excluded volume effect should be negligible, especially for
high strain rates, since it decreases with increasing segment- Il. MODEL
segment distance. The hydrodynamic interaction, however, is
long ranged in nature, and its influence on the chain confor- The polymer chain is comprised &f+1 identical mass
mation and dynamics does not vanish with increasing chai0ints of massn. The positions of the points are given by
extension. r.,n=0,1,... N. Furthermore we use the center of mass
So far we addressed the steady state properties of a chdifference frame, i.e${ or,=0 for the calculation of the
in a flow field. However, because of the limited residenceStéady state properties. The bonds between successive mass
time of a polymer in a flow field, the steady state is rarelyPoints are t_aken into account in a mean field description by
reached in experimenfd4,15. Thus it is of paramount im- e constraints
portance to describe the dynamic properties of the chain as
well. Unfortunately, up to now most theoretical descriptions ((ra=rn-1?=12, n=1,... N, (D)
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where |2 is the mean square distance between successive A. Analytical solution

mass points. These constraints guarantee the finite extensi- 114 equations for the steady state can be solved analyti-

bility of the chain. Using the maximum entropy principle ¢4y if we assume that all the Lagrangian multipliers are
[18—21], the distribution function equal, i.e.

N
1 1 =vy=v, Vn, m=1...N. 7
Pp({rnp) = Zexp( N nZl Vn(rn_rn—1)2> i “
- Physically this means that all segments along the chain are
1 N considered identical. Thil constraints of Eq(1) are now
—_— 2 M (2 reduced to a single constraint

xXexf —BV({rn})]o

N+1 =0
N
and the partition function 2 <(fn—fn71)2>= NIZ2. 8)
. N n=1
Z=j d3(NF Dy ex;{ e Z Vn(rn_rnl)z) Notice that the single constraint of E(8) guarantees the

n=1 finite extensibility of the chain as a whole, but allows for an
1 N inhomogeneous stretching of the bonds along the chain con-
xexd —BVHraH18| v >, fn) (3) tour. As a consequence, some bonds of the chain may be
N+1 7o longer than others in the ensemble average. This is in con-

) trast to the original constraints of E(.), where all bonds are
can easily be calculated, whevedenotes an external poten- yaqired to be of the same length in the ensemble average.

tial. The Lagrangian multiplier, take the constraint§l) Using the constraint described by H§), a normal mode
into account, and are determined by transformation according to
J N
1=——InZ, n=1,...N. (4 _ 2 k7 1
vy, M= N+1k§=:o XkCO NT1 n+ > 9

For an elongational flow, the external potentals given by ) N )
yields the partition functiofiEq. (3)]

N
V({rn}):_gnzo MhKl ) T

z~11

k=1 2v kr B<L.
—€l2 0 0 - 1/2
. X 10
k= 0 —¢2 0 (6) 2v L kw | BL. (10
0 0 - 2\ TN FL) T 2

is the rate of deformation tensor, agds the friction coef- in the center of mass reference framg,€0). Using NI?
ficient of a single beadfor details on elongational flows, see =—gIn Z/gv, the Lagrangian multiplier follows from
Refs.[5,22]). For this choice of the strain rate tensor the flow

has a stagnation point at=0. The calculation of the La- 1 )

grangian multipliers according to E¢) leads to a set ol N= ;[ N_ta”hf[(N+1)C°t“N+1)M_C°thM]]
nonlinear coupled equations which cannot be solved analyti-
cally. To obtain analytical solutions for the Lagrangian mul-
tipliers as well as for certain ensemble avera@es belowy

1 o—1
+Z N—tanT[(N+1)CO1(N+1)((p—7T)
a simplification is required.

—cot(cp—w)]], (11
I1l. STEADY STATE PROPERTIES

In this section we will calculate the steady state properties . < <
of the polymer chain. As already mentionedyabove,pthep equav-vIth coshu=1+¢/(8v) and cosp= E/(4z)_1_' In Eq.(1D) we
tions of our model are not analytically tractable. Thereforentroduced the scaled deformation rate e, with
we will present two different approaches in this section. In
Sec. Il A we are interested in analytical solutions, which _iz 12
require a simplification of our model. In Sec. Il B the nu- T kgT" (12
merical solution of the model is presented without any sim-
plification as well as a comparison between the analyticalhe strain rate dependence of the Lagrangian multiplier can-
results of the simplified model with the numerical solution of not be calculated analytically from E@ll); therefore, we
the full problem. have to solve this equation numerically for every strain rate.
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The shape of a polymer chain can be described by the 100 ; '
mean square end-to-end distance or the radius of gyration. ’
Using the stationary state distribution functideq. (2)], the
ensemble averages for the mean square end-to-end distanc
and the radius of gyration can be calculated in a straightfor-
ward manner, and we obtain

o 17 w o N+1
((Xn—Xo) >=5 cothitanhT,u,—l , (13

) 2 o—m N+1
((zn—20) >:5 COtTta”T(QD_TF)—l :

(14

0
0.001 0.01

€

2 :|2[(N+1)cotr{N+1),u—coth,u]

¢ 2v(N+1)sinhu FIG. 1. Elongational rate dependence of the mean square end-
to-end distance for aN=100 chain determined by E¢L3) (solid
2 oy _
B [“T(N+1)cot(N+1)(¢—m)—cotl¢— )] line). The dashed curve shows the results of the Rouse model. The
2v(N+1)sin(¢— ) ' single points are given by a computer simulation of a bead-rod
(15) chain[16].

wherev is determined from Eq11) (for symmetry reasons, For such strain rates the Lagrangian multipliers propor-

the y component of the mean square end-to-end distance ifonal to the strain rate, and E¢L1) yields v= NZZ'/(ZWZ).

identical with thex componer’)t Figures 1 and 2 show the |nserting this approximation, we obtain

strain rate dependence of the mean square end-to-end dis-

tance and the radius of gyration in comparison to computer 8N2|2 372

simulation data[16,23. According to Fig. 1, significant ((ry—r0)2)= . (1_ _) '
m ’ENZ

chain stretching occurs only at strain rates abavee,

=37?/N?. It should be noted that the simple Rouse model

(wherev=3/2 for all strain ratesdiverges at this point. Our N2|2 3772
predictions for the strain rate dependence of the mean square Ré=—( - —)
end-to-end distance and of the radius of gyration agree well ™

with computer simulation results for low and moderate strain
rates, whereas for high strain rates we find a discrepancy
about 10% between our data and the computer simulatio
data. This discrepancy is explained by the fact that in th
computer simulations a bead-rod model is used, whereas
use a modified bead-spring model. In the bead-rod model all

- (16)
eN?

f . < . .

r strain ratese>372/N?. These approximate solutions re-
roduce the exact numerical values very accurately. From
gs.(16) we find the maximum value

bonds along the chain remain unstretched for all strain rates. . 5 gk 212
Conversely, in our bead-spring model the constraint of Eq. .I'm<(rN_r0) )= 2 ~0.8IN (17)
(8) allows for the stretching of some bonds along the chain e

as long as the sum over all squared distances between suc-

cessive beads remains constant in the ensemble average. =~ 1000 ; .

closer examination indeed shows that the bonds in the
middle of the chain are stretched compared to the bond
length of the bead-rod model. In order to compensate for that
stretching, the bonds at the chain ends are shorter in average
Figure 3 shows the bond length dependence along the chail 600
for various strain rates. Obviously, the discrepancies betweeng, /2
the lengths of the bonds at the chain ends and those in the
middle increases with increasing strain rate. Thus it can be
expected that our model disagrees with computer simulations
of a bead-rod chain for high strain rates. Moreover, Fig. 1 200
shows that even for very high strain rates the rod limit is not
reached. Our model predicts a maximum mean square end o
to-end distance of about 80% of the rod limit. Nevertheless, 0.001
our simplified analytical calculations capture the basic fea-
tures of polymer chains exposed to an elongational flow. For

800

400

b FIG. 2. Radius of gyration vs elongational rate for our theoret-
strain rates above the coil-stretch transitioan=@7%/N?),  ical predictions(solid line), the Rouse mode{dashed ling and
we are able to find approximate solutions for EG®)—(15). computer simulationf23] (pointg for a chain withN=100 beads.
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FIG. 3. Mean square extension of individual bonds as a function  FIG. 4. Intrinsic viscosity as a function of the elongational rate
of the position along the chain for a chain with=100 beads. The calculated from Eq.19) (solid line). The results of the Rouse

various curves display different strain rates, startingga0 (no ~ model (dashed ling and a computer simulatiof23] (points are

flow) up to'e=0.01 representing a highly stretched conformation. provided for comparison. The chain lengthNs=100.

for the end-to-end-distance of our model. Notice, that thePuter simulations23] is achieved for low and moderate
strain rate dependent term of E@%6) is independent of the strain rates. For high strain rates, we again find a discrepancy
chain length. Hence we obtain universal behavior with re-0f approximately 10%, which can be explained by the differ-
spect to changes in the chain length, if we scale the end-tg2nces of the two models discussed above.

end distance or the radius of gyration by the square of the
chain length L=NI) and the strain rate by the Rouse relax-

. . . B. Numerical solution
ation time 7 given by

In this section we present a numerical solution of our

N2I2¢ model without the simplification of Sec. Ill A. The numerical
TR (18  calculation of the Lagrangian multipliens,, . .. vy is lim-
3mkgT ited to relatively short chains, because it involves the solu-

. . o tion of N nonlinear equations. Furthermore, closed expres-
respectively. A numerical calculation indeed shows th_at th&ions like Eqs(13)—(15) for the ensemble averages cannot
differences between these quantities at a given strainerate be calculated. Therefore, we not only have to calculate the
vanish with increasing chain length. Therefore, we limit ourLagrangian multipliers but also the ensemble averages nu-
further calculations to relatively short chainsif 100, be-  merically.
cause a further increase of the chain length yields no signifi- To obtain a numerical solution, we rewrite the exponents

cant new results. in Egs.(2) and(3) as

According to Eq.(13), the x andy components of the N N
end-to-end distance approach zero with increasing strain rate. 1 5 1
Hence, the chain is not only highly stretched in an eIonga-eXp( 2 ngl Vn(Fn=Tn-1) )=9XP( -5 ”Z:O ajf rl)'

tional flow but also highly oriented.

In addition, we calculated the intrinsic elongational vis-
cosity for the steady state, which characterizes the rheologi-
cal properties of the solution. For bead-spring models thavherea;; are the components of the tridiagonal matrix
intrinsic viscosity is giverj22,24

- 0 ... 0
[7] 12(1 "1 "1
m N ERé,x+ Ré,z ' (19 —vy vitv, —, ... 0
_ A= O —va wtvy ... 0. (2]
where[ 7] is the viscosity fore=0. The strain rate depen- - : : : :
dence of the intrinsic viscosity of Fig. 4 exhibits a qualitative 0 0 0
similar behavior as the one for the end-to-end distance or the o PN

radius of gyration. Below a critical strain rate the intrinsic

viscosity remains virtually constant. Abowe the intrinsic ~ To calculate the partition function, the eigenvectbfsand
viscosity increases rapidly, and reaches a stationary value f&genvalues., of the matrixA are determined. Inserting the
above the equilibrium value at high strain rates. Again, theexpansionw, =3} x,bk, with we{x,y,z}, into Egs.(2)
intrinsic viscosity calculated by the Rouse model divergesand(3), the remaining integrals can easily be calculated, and
above the critical strain rate. Similar to the end-to-end diswe obtain the following nonlinear set of equations to deter-

tance and the radius of gyration, a good agreement with conmine the Lagrangian multipliefs\ ;=\ ({7})]
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FIG. 5. Elongational rate dependence of the mean square end- fiG. 6. Values of the Lagrangian multipliers as a function of the

to-end distance for aN=100 chain calculated numerically with all  ysition along the chain for different strain rates. The chain lengths
Lagrangian multipliergsolid curve. The dashed curve again shows s N=100. Due to the symmetry, only values up N2 are pre-
the results calculated with only one Lagrangian multiplier. Com-ganted

puter simulation datf16] are provided for comparisofpoints.

values up tam=N/2. As is obvious from Fig. 6, the Lagrang-
2 1 ian multipliers increase smoothly toward the middle of the
( —+ ;) (bs—br_1)?=1. (22 chain. The differences between the values of the Lagrangian
2\ t€el2 2N —€ multipliers at the chain ends and the middle of the chain
increase with increasing strain rate, and may differ up to an
Similarly, the end-to-end distance and the radius of gyraorder of magnitude for very high strain rates. The calculated
tion are obtained via mean value of all the Lagrangian multipliers along the chain
N yields good agreement with the single Lagrangian multiplier
n 12 K k2 of the simplified model for all strain rates. The fact that the
((ry=ro)9)=I g’o ( P ;) (by=Dbo)%, Lagrangian multipliers in the middle of the chain are larger
2\ t+€el2 2N~ € than those at the chain ends is in agreement with the longer
(23 chain segments in the middle of the chain if we use only one
Lagrangian multiplielsee Fig. 3.

2

k=0

2

2 XN 2 1

RE= > > ( + )(bﬁ)z. (24)

- = ~ ~ IV. DYNAMICS
NFLAZ0 /=0 | o) 1o o, %

In Sec. lll we addressed the steady state properties of a

The result of the numerical calculation of the strain rate dechain in an elongational flow. Now we are interested in the
pendence of the mean square end-to-end distance is shownnpnequilibrium properties of such a polymer chain. As al-
Fig. 5 for a chain withN=100. For low and moderate strain ready mentioned above, the steady state is not always
rates, Fig. 5 shows that the mean square end-to-end distanached in experimen{d4,15 because of the limited resi-
is almost identical to that calculated with the simplification dence time. In order to provide a theoretical description of
of Eq. (7), but for high strain rates the two curves of Fig. 5 experimental data it is necessary to know the residence time
exhibit significant deviations. In contrast to the approximatedependence of the measured quantities, such as the mean
solution, the end-to-end distance calculated with the Lasquare end-to-end distance, for a given strain rate. For non-
grangian multipliers satisfying the exact constraints of Eq.equilibrium properties, the initial chain conformation is es-
(1) approaches the completely stretched conformation wittpecially important, because the dynamics of the chain de-
increasing elongation rate, as it is supposed to. Despite thgbends upon that conformatiofil5,16. Up to now this
our model calculations do not reproduce the simulation datdehavior has only been analyzed by computer simulations of
exactly [16]. However, the overall agreement between thebead-spring and bead-rod models, concentrating primarily on
two calculations is much better than that achieved with thehe unraveling behavior of an initially coiled chain
simplified model. Calculations of the radius of gyration and[8-10,17,25,2b
the intrinsic viscosity yield similar results. As we will demonstrate below, we are able to analyze the

Depending upon the kind of the external field applied to anonequilibrium properties of a polymer chain in an external
polymer chain, the Lagrangian multipliers are no longer confield with our model. In particular, we are able to study the
stant along the chain conto{it9], i.e., the bond forces are approach of the steady state from any initial conformation.
inhomogeneously distributed along the chain. Figure 6 disWe will, however, only present results for initially coiled and
plays the values of the Lagrangian multipliers as a functiorstretched chains, respectively. In this section we will only
of the position along the chain for various strain rates. Theuse the simplified model, i.e., all Lagrangian multiplier are
values of the Lagrangian multipliers are symmetric with re-set equal, because the equations are already rather complex
spect to the middle of the chain. Therefore, we only presenwvith this simplification.
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The Hamiltonian for our model, described in Sec. lll A, is N Ko
i . —_ = 2
given by ZkZl (x(t) Xk(t))(l com) NI2. (31)

2

H= E :

(25) The solution of the differential equatigq28) is given by
2m B|2

2<r

—rho1)?+V,

t

where V is given by Eq.(5). It should be noted that for Xk(t):ex%_ftohk(t )17t ] xid(to)
nonequilibrium states the Lagrangian multiplierdepends
not only on the strain rate, but also on time. No(t) has to i Y a1
be determined in such a way that the constant contour length * Zﬁodt T )ex;:( fto [7c(t)]"dt ”
is maintained for every flow strength at any time. Therefore,
all averageg- - -) used in this section are ensemble averages (32
at a given time and not time averages. with

The dynamics of the polymer chain is described by the
well known Langevin equatiorj22]. Using Hamiltonian
(25), we obtain the followingN+1 coupled equations of
motion for the positions of the mass points

v(t)

-1
T (1) = 5{ FE ] . (33

1- cov

As necessary, the steady state propelies, v is indepen-

d 2v(t
garn— V(Z) (M1t 1= 2ry) +Lar+ Th(t), dent of time, calculated using the above expressigreld
Bl exactly the results presented in Sec. Il A.

(26)

whereI',(t) is a Gaussian distributed random forgehite
noise. A normal mode transformation according to

1
n+ E)} (27

leads toN+ 1 uncoupled equations for the amplitudggt):

N
B 2 2 ) kar
rn(t)_ N+1k:O Xk( )CO N+ 1

4p(t)

FE (1 cov

Ixe=|— + |+ T, (29

The correlations of the transformed random forégscan
easily be calculated and we obtain

(T(t))y=0,

(TEOTE))=2¢keT Sembapdt—t"), a@,Beix,y,z}.

(29

With the solution of Eq(28) for the amplitudesy, the en-

The equations for the Lagrangian multipliet) and the
amplitudesy, form a nonlinear set of equations, which have
to be solved simultaneously. A closed solution of integral
(32), however, cannot be given. Hence, we use the following
iteration scheme for an approximate solution: For sufficiently
small At=t—t,, the integral over the inverse of the relax-
ation time can be approximated b)[{ofﬁ‘(t’)*ldt’

~ 1¢(to) " }(t—ty). Amplitudes(32) are then given by

o, ! tdt’F“(t’)
m(to)) ¢l “

t—t’
xXexp — — . (39
i (to)
The iteration scheme converges in the limitt;— 0. With
this approximate solution the following correlations for the

Xli'(t)=xﬁ“(to)e><p( -

(Xﬁ”(?)>=<x|i'("fo)>exp(

semble averages of the end-to-end distance and the radius of

gyration can be calculated according to the following equa-

tions:

) N
(e =roaOF)= 7 2 XK(DXRD)

km . mm
N+ 1) D (N+1)
(30)

X COS
2

1 N
REa=NTT &, (KKDXK(D).

amplitudesy, (t) are obtained:
T )
EAO
O xm(D) = Gl xm(to))

><ep[ (1 “t')( ! + ! H
Xg —(1— = = =
° i (to)  Tm(to)

=
l-exp —2=——= .
T (to)

(35

+7¢(T0) iem

In the equations we introduced the scaled titwet/7 and

relaxation timer= 7/, respectively, where is defined in
Eqg. (12). The above correlations together with E§1) pro-
vide an iterative solution of the problem, where the iteration

The equation to determine the Lagrangian multiplier is giverprocess is as follows: First we calculate the Lagrangian mul-

by

tiplier [Eq. (31)] for a given time using Eq.35). In the next
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FIG. 7. Mean square end-to-end-distance as a function of time |G, g, Radius of gyratioidashed curjewith its components

for an initially coiled chain in elongational flowN=100). The  parallel (dotted curvé and perpendicular(solid curve to the
various curves correspond to the indicated strain rates. stretching direction.

step all relevant averages, such as the end-to-end distance oy ) ~ )

the radius of gyration, are calculated for the same time. FiRG 1S approximately constant far<5, whereas it andy
nally, the time is increased by one stdp{1+AT), and the components decrease significantly, and zhmmponent. |n
Lagrangian multiplier is calculated again. This procedure i<£€@ses by a factor of 2. Hence, the even at equilibrium
repeated until the stationary state is reached. It should bSymmetric coil, with respect to the line connecting the end
noted that the dynamics of the system depends on the initi&l0INts of the chain, reorients due to the flow with the major
conformation of the polymer chaify’(to) appears in the aX|s.of inertia pointing along the flqw directioa (jlrectlor‘)._ .
correlationg. Hence in the first step of our iteration scheme Chains close to a smooth surface in a polymer meit exhibit a

amplitudes are obtained from the initial chain positions usinga"d deforms along the direction, whereas the transverse
the following equation: components of the radius of gyration decrease to almost

zero. Finally, the steady state conformation of the chain is

reached. The end-to-end distance exhibits a similar behavior.
. (36 In addition, we investigated whether the deformation of
the chain in the elongational flow is affine. According to
Refs. [26,28, the Henky straine; necessary to stretch a
chain is given by

N
"2

N
@l 2 Z w~ kar
Xk (to)= m,,:orn“o)co NT1

With Eq. (36), the initial amplitudes can be calculated for
many different chain conformations analytically.

We investigated the dynamics of chains with two distinct
initial conformations, namely, initially coiled chains and ini-
tially rodlike chains. In each case, the iteration procedure
described above worked very well. Figure 7 shows the time
dependence of the mean square end-to-end distance for & an affine deformation. The Henky straén is defined as
initially c0|led_ chain f_or various s_tra|r} rates. Obviously the_ ef=étf. Heret; is the time where the tangent to the radius
end-to-end distance increases with time. In agreement WIth gyration or end-to-end distance curves in Fig. 7 in the

the steady state results of Fig. 1, significant chain stretching;'teep increasing regime intersects the tangent to the equilib-

occurs above the critical strain ratg~37%/N?. The various  rium value. According to E(37) a Henky strain of approxi-
curves of Fig. 7 for the various strain rates display a verymately e;~3.3 should be expected for tidé=100 chain in
similar behavior. For short time&lependent on the strain the case of an affine deformation. In our model we find
rate the end-to-end distance remains virtually constant. Af-Henky strains of about 3.3—-3.5 depending on the strain rate.
ter a certain time, the end-to-end distance increases veiphis indicates that the chain deformations is affine for most
sharply and approaches the stationary state value, which dstrain rates.
pends on the strain rate, and which has been already calcu- We now examine the time dependence of the end-to-end
lated in Sec. Il A. Moreover, Fig. 7 shows that the time distance for an initially fully stretched chain. Figure 9 shows
required to reach the state state decreases with increasitigat the end-to-end distance decreases monotonically with
strain rate. time. Depending on the strain rate, the chain relaxes, starting
Deeper insight into the conformational changes during thet the fully stretched state, to a coiled configuration for low
coil-stretch transition can be gained by examining the spatiadtrain rates and partially or almost fully stretched configura-
components of the end-to-end distance and/or the radius d¢ibns for medium and high strain rates. The end-to-end dis-
gyration individually. Figure 8 shows the time dependence otances corresponding to this configuration remain constant in
the mean square radius of gyration together with its compotime, indicating thermodynamic equilibrium. Similar to the
nents along the axis (y axis) and thez axis, respectively. case of the initially coiled chain the time to reach equilib-

1
e=1+5IN (37)
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100 an elongational flow using a finite extensible bead spring
model. The finite extensibility of the chain is achieved by
forcing all the mean square distances between successive
points along the chain to assume a constant value. These
constraints are taken into account in the solution of the equa-
tions of motion by Lagrangian multipliers.

The steady state properties are calculated analytically for
a simplified model, where all the Lagrangian multipliers are
equal, as well as numerically for the full problem. Depending
on the flow strength, the magnitude of the Lagrangian mul-
tipliers, and hence the force in a particular bond, depends
significantly on its position along the chain.

A comparison of the mean square end-to-end distance ob-
tained from our model with computer simulations for the
viscosity exhibits good agreement. This demonstrates that
~ FIG. 9. Decrease of the mean square end-to-end distance Wi, model captures the main features of polymer chains ex-
time for different strain rates of an initially fully stretched chain posed to an elongational flow.

(N=100). The investigation of the dynamical behavior of the chains
ﬁhows that the time to reach the steady state decreases with

rium decreases with increasing strain rate. It should be note . . i -
that the equilibrium value of the end-to-end distance is simi.ncreasing flow strength. This holds independently of the ini-

lar to that calculated in Sec. Il A or to the value for the tidl conformation of the chain.

initially coiled chain. Thus we do not find any strain rate In_ the pregent caIcu_Iatpns we neglegted the hydrody-
dependence of the end-to-end distance on the initial config?@mic interaction. Considering the qualitative agreement be-
ration of the chain at thermodynamic equilibrium. Calcula-tween experimental results and our model calculations, one
tions with other initial configurations, such as folded chainsmight argue that the hydrodynamic interaction has only a
exhibit similar results, and again show no dependence on th@inor effect on the deformation behavior of a chain. There

steady state properties on the specific initial conformation. are, however, certain experimental findings, like the depen-
dence of the relaxation time to approach equilibrium on the

initial conformation, which cannot be explained within the
current approach. Such effects might be due to the hydrody-

We have analyzed the steady state properties as well agmic interaction. Investigations along that line are under-
the nonequilibrium dynamic behavior of a polymer chain inway.

V. CONCLUSION
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