
PHYSICAL REVIEW E MARCH 2000VOLUME 61, NUMBER 3
Dynamics of a polymer chain in an elongational flow

T. Hofmann, R. G. Winkler, and P. Reineker
Abteilung Theoretische Physik, Universita¨t Ulm, D-89069 Ulm, Germany

~Received 17 September 1999!

The configurational and rheological properties of a flexible polymer chain in an elongational flow are studied
analytically. To take into account the finite extensibility of a linear chain molecule, we apply the constraint of
a fixed contour length, which leads to deformation dependent force coefficients. For the steady state, the
distribution and partition functions are calculated using the maximum entropy approach. A comparison of our
predictions for the strain rate dependence of the deformation and the intrinsic viscosity with computer simu-
lations yields good agreement. Furthermore, we analyze the dynamics of the polymer chain for different
nonequilibrium initial conformations by solving the Langevin equation. In this case the time to approach the
steady state depends upon the chosen initial conformation.

PACS number~s!: 61.25.Hq, 36.20.Ey, 83.10.Nn
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I. INTRODUCTION

The behavior of dilute polymer solutions in an elong
tional flow has been an outstanding problem in polymer s
ence for several decades@1–6#, both from experimental and
theoretical points of view. The velocity gradient along t
direction of flow can stretch the polymer far from its equ
librium configuration. Due to the extension, the polymer e
erts a force back on the solvent that leads to important n
Newtonian properties of the solution such as turbulent d
reduction or enhancement of the solution viscosity@5,7#. For
a theoretical description, the hydrodynamic interaction me
ated by the solvent combined with the nonequilibrium st
of the chain causes major problems. Thus, for an analyt
approach, simple models are required which still capture
basic features of a polymer chain. Many theories use
Rouse model or the dumbbell model to describe the poly
chain. The major advantage of these models is analyt
tractability, although they possess major drawbacks
since all nonlinear effects like the finite extensibility@5,8–
10# or the hydrodynamic interaction@11–13#, as well as the
excluded volume interaction, are neglected. The three ab
mentioned effects differ in their importance for the confo
mational and rheological properties of a polymer chain in
elongational flow. Due to the extension of a chain by t
flow, the finite extensibility of a real polymer chain is o
fundamental importance for the actual conformation of
chain because it yields a serious constraint for the defor
tion of the chain. On the other hand, the influence of
excluded volume effect should be negligible, especially
high strain rates, since it decreases with increasing segm
segment distance. The hydrodynamic interaction, howeve
long ranged in nature, and its influence on the chain con
mation and dynamics does not vanish with increasing ch
extension.

So far we addressed the steady state properties of a c
in a flow field. However, because of the limited residen
time of a polymer in a flow field, the steady state is rare
reached in experiments@14,15#. Thus it is of paramount im-
portance to describe the dynamic properties of the chain
well. Unfortunately, up to now most theoretical descriptio
PRE 611063-651X/2000/61~3!/2840~8!/$15.00
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are only applicable for the calculation of steady state pr
erties of a chain.

In this paper we present an analytical description of
steady state as well as non-steady-state properties of a p
mer chain in an elongational flow. In particular, we take in
account the finite chain extensibility by constraints. The h
drodynamic interaction is neglected in the following calcu
tion. Its influence on the chain conformations and dynam
will be discussed in a future publication. In addition, th
excluded volume interaction is neglected~see the commen
above!. Comparisons of our results with computer simu
tions will be presented. In particular, our method allows o
to calculate the residence time dependence of the m
square end-to-end distance for different nonequilibrium i
tial conformations. Predictions for this dependence for i
tially coiled or stretched chains, respectively, are in go
agreement with recent computer simulations@16,17#. Our re-
sults show that the time to approach the steady state dep
upon the chosen initial conformation.

The paper is organized as follows. In Sec. II the ch
model is described. In Sec. III the steady state properties
discussed. The strain rate dependence of the mean sq
end-to-end distance and the intrinsic viscosity are calcula
and compared to the predictions of computer simulations
Sec. IV we outline our approach to calculate the nonequi
rium dynamics of the polymer chain in an elongational flo
Solutions of the equations of motion are presented for t
distinct nonequilibrium initial conformations of the cha
~coiled and stretched! and are compared with compute
simulations. Finally, Sec. V summarizes our results.

II. MODEL

The polymer chain is comprised ofN11 identical mass
points of massm. The positions of the points are given b
rn ,n50,1, . . . ,N. Furthermore we use the center of ma
reference frame, i.e.,(n50

N rn50 for the calculation of the
steady state properties. The bonds between successive
points are taken into account in a mean field description
the constraints

^~rn2rn21!2&5 l 2, n51, . . . ,N, ~1!
2840 ©2000 The American Physical Society
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where l 2 is the mean square distance between succes
mass points. These constraints guarantee the finite ext
bility of the chain. Using the maximum entropy princip
@18–21#, the distribution function

c~$rn%!5
1

Z
expS 2

1

l 2 (
n51

N

nn~rn2rn21!2D
3exp@2bV~$rn%!#dS 1

N11 (
n50

N

rnD ~2!

and the partition function

Z5E d3(N11)r expS 2
1

l 2 (
n51

N

nn~rn2rn21!2D
3exp@2bV~$rn%!#dS 1

N11 (
n50

N

rnD ~3!

can easily be calculated, whereV denotes an external poten
tial. The Lagrangian multipliersnn take the constraints~1!
into account, and are determined by

152
]

]nn
ln Z, n51, . . . ,N. ~4!

For an elongational flow, the external potentialV is given by

V~$rn%!52
z

2 (
n50

N

rnkrn , ~5!

where

k5S 2 ė/2 0 0

0 2 ė/2 0

0 0 ė
D ~6!

is the rate of deformation tensor, andz is the friction coef-
ficient of a single bead~for details on elongational flows, se
Refs.@5,22#!. For this choice of the strain rate tensor the flo
has a stagnation point atr50. The calculation of the La-
grangian multipliers according to Eq.~4! leads to a set ofN
nonlinear coupled equations which cannot be solved ana
cally. To obtain analytical solutions for the Lagrangian m
tipliers as well as for certain ensemble averages~see below!,
a simplification is required.

III. STEADY STATE PROPERTIES

In this section we will calculate the steady state proper
of the polymer chain. As already mentioned above, the eq
tions of our model are not analytically tractable. Therefo
we will present two different approaches in this section.
Sec. III A we are interested in analytical solutions, whi
require a simplification of our model. In Sec. III B the n
merical solution of the model is presented without any s
plification as well as a comparison between the analyt
results of the simplified model with the numerical solution
the full problem.
ve
si-

ti-
-

s
a-
,

-
l

f

A. Analytical solution

The equations for the steady state can be solved ana
cally if we assume that all the Lagrangian multipliers a
equal, i.e.,

nn5nm5n, ;n, m51, . . . ,N. ~7!

Physically this means that all segments along the chain
considered identical. TheN constraints of Eq.~1! are now
reduced to a single constraint

(
n51

N

^~rn2rn21!2&5Nl2. ~8!

Notice that the single constraint of Eq.~8! guarantees the
finite extensibility of the chain as a whole, but allows for a
inhomogeneous stretching of the bonds along the chain c
tour. As a consequence, some bonds of the chain may
longer than others in the ensemble average. This is in c
trast to the original constraints of Eq.~1!, where all bonds are
required to be of the same length in the ensemble avera

Using the constraint described by Eq.~8!, a normal mode
transformation according to

rn5A 2

N11(
k50

N

xkcosF kp

N11 S n1
1

2D G ~9!

yields the partition function@Eq. ~3!#

Z;)
k51

N F S p

2n

l 2 S 12cos
kp

N11D1
bz

4
ėD

3S p

2n

l 2 S 12cos
kp

N11D2
bz

2
ėD 1/2G ~10!

in the center of mass reference frame (x050). Using Nl2

52] ln Z/]n, the Lagrangian multiplier follows from

N5
1

n H N2tanh
m

2
@~N11!coth~N11!m2cothm#J

1
1

2n H N2tan
w2p

2
@~N11!cot~N11!~w2p!

2cot~w2p!#J , ~11!

with coshm511ė̃/(8n) and cosw5ė̃/(4n)21. In Eq.~11! we

introduced the scaled deformation rateė̃5tė, with

t5
z l 2

kBT
. ~12!

The strain rate dependence of the Lagrangian multiplier c
not be calculated analytically from Eq.~11!; therefore, we
have to solve this equation numerically for every strain ra
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The shape of a polymer chain can be described by
mean square end-to-end distance or the radius of gyra
Using the stationary state distribution function@Eq. ~2!#, the
ensemble averages for the mean square end-to-end dis
and the radius of gyration can be calculated in a straight
ward manner, and we obtain

^~xN2x0!2&5
l 2

2n S coth
m

2
tanh

N11

2
m21D , ~13!

^~zN2z0!2&5
l 2

2n S cot
w2p

2
tan

N11

2
~w2p!21D ,

~14!

RG
2 5

l 2@~N11!coth~N11!m2cothm#

2n~N11!sinhm

2
l 2@~N11!cot~N11!~w2p!2cot~w2p!#

2n~N11!sin~w2p!
,

~15!

wheren is determined from Eq.~11! ~for symmetry reasons
the y component of the mean square end-to-end distanc
identical with thex component!. Figures 1 and 2 show th
strain rate dependence of the mean square end-to-end
tance and the radius of gyration in comparison to compu
simulation data@16,23#. According to Fig. 1, significant

chain stretching occurs only at strain rates aboveė̃'ė̃c
53p2/N2. It should be noted that the simple Rouse mo
~wheren53/2 for all strain rates! diverges at this point. Ou
predictions for the strain rate dependence of the mean sq
end-to-end distance and of the radius of gyration agree
with computer simulation results for low and moderate str
rates, whereas for high strain rates we find a discrepanc
about 10% between our data and the computer simula
data. This discrepancy is explained by the fact that in
computer simulations a bead-rod model is used, wherea
use a modified bead-spring model. In the bead-rod mode
bonds along the chain remain unstretched for all strain ra
Conversely, in our bead-spring model the constraint of
~8! allows for the stretching of some bonds along the ch
as long as the sum over all squared distances between
cessive beads remains constant in the ensemble averag
closer examination indeed shows that the bonds in
middle of the chain are stretched compared to the b
length of the bead-rod model. In order to compensate for
stretching, the bonds at the chain ends are shorter in ave
Figure 3 shows the bond length dependence along the c
for various strain rates. Obviously, the discrepancies betw
the lengths of the bonds at the chain ends and those in
middle increases with increasing strain rate. Thus it can
expected that our model disagrees with computer simulat
of a bead-rod chain for high strain rates. Moreover, Fig
shows that even for very high strain rates the rod limit is
reached. Our model predicts a maximum mean square
to-end distance of about 80% of the rod limit. Neverthele
our simplified analytical calculations capture the basic f
tures of polymer chains exposed to an elongational flow.

strain rates above the coil-stretch transition (ė̃'3p2/N2),
we are able to find approximate solutions for Eqs.~13!–~15!.
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For such strain rates the Lagrangian multipliern is propor-

tional to the strain rate, and Eq.~11! yields n5N2ė̃/(2p2).
Inserting this approximation, we obtain

^~rN2r0!2&5
8N2l 2

p2 S 12
3p2

ė̃N2D ,

RG
2 5

N2l 2

p2 S 12
3p2

ė̃N2D ~16!

for strain ratesė̃.3p2/N2. These approximate solutions re
produce the exact numerical values very accurately. Fr
Eqs.~16! we find the maximum value

lim

ė̃→`

^~rN2r0!2&5
8N2l 2

p2
'0.81N2l 2 ~17!

FIG. 1. Elongational rate dependence of the mean square
to-end distance for anN5100 chain determined by Eq.~13! ~solid
line!. The dashed curve shows the results of the Rouse model.
single points are given by a computer simulation of a bead-
chain @16#.

FIG. 2. Radius of gyration vs elongational rate for our theor
ical predictions~solid line!, the Rouse model~dashed line!, and
computer simulations@23# ~points! for a chain withN5100 beads.
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PRE 61 2843DYNAMICS OF A POLYMER CHAIN IN AN . . .
for the end-to-end-distance of our model. Notice, that
strain rate dependent term of Eqs.~16! is independent of the
chain length. Hence we obtain universal behavior with
spect to changes in the chain length, if we scale the end
end distance or the radius of gyration by the square of
chain length (L5Nl) and the strain rate by the Rouse rela
ation timetR given by

tR5
N2l 2z

3p2kBT
, ~18!

respectively. A numerical calculation indeed shows that

differences between these quantities at a given strain raė̃
vanish with increasing chain length. Therefore, we limit o
further calculations to relatively short chains ofN5100, be-
cause a further increase of the chain length yields no sig
cant new results.

According to Eq.~13!, the x and y components of the
end-to-end distance approach zero with increasing strain
Hence, the chain is not only highly stretched in an elon
tional flow but also highly oriented.

In addition, we calculated the intrinsic elongational v
cosity for the steady state, which characterizes the rheol
cal properties of the solution. For bead-spring models
intrinsic viscosity is given@22,24#

@h#

@h#0
5

12

N S 1

2
RG,x

2 1RG,z
2 D , ~19!

where@h#0 is the viscosity forė̃50. The strain rate depen
dence of the intrinsic viscosity of Fig. 4 exhibits a qualitati
similar behavior as the one for the end-to-end distance or
radius of gyration. Below a critical strain rate the intrins

viscosity remains virtually constant. Aboveė̃c the intrinsic
viscosity increases rapidly, and reaches a stationary valu
above the equilibrium value at high strain rates. Again,
intrinsic viscosity calculated by the Rouse model diverg
above the critical strain rate. Similar to the end-to-end d
tance and the radius of gyration, a good agreement with c

FIG. 3. Mean square extension of individual bonds as a func
of the position along the chain for a chain withN5100 beads. The

various curves display different strain rates, starting atė̃50 ~no

flow! up to ė̃50.01 representing a highly stretched conformatio
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puter simulations@23# is achieved for low and moderat
strain rates. For high strain rates, we again find a discrepa
of approximately 10%, which can be explained by the diffe
ences of the two models discussed above.

B. Numerical solution

In this section we present a numerical solution of o
model without the simplification of Sec. III A. The numeric
calculation of the Lagrangian multipliersn1 , . . . ,nN is lim-
ited to relatively short chains, because it involves the so
tion of N nonlinear equations. Furthermore, closed expr
sions like Eqs.~13!–~15! for the ensemble averages cann
be calculated. Therefore, we not only have to calculate
Lagrangian multipliers but also the ensemble averages
merically.

To obtain a numerical solution, we rewrite the expone
in Eqs.~2! and ~3! as

expS 2
1

l 2 (
n51

N

nn~rn2rn21!2D 5expS 2
1

l 2 (
i , j 50

N

ai j r i•r j D ,

~20!

whereai j are the components of the tridiagonal matrix

A5S n1 2n1 0 . . . 0

2n1 n11n2 2n2 . . . 0

0 2n2 n21n3 . . . 0

A A A � A

0 0 0 . . . nN

D . ~21!

To calculate the partition function, the eigenvectorsbk and
eigenvalueslk of the matrixA are determined. Inserting th
expansionwn5(k50

N xkbn
k , with wP$x,y,z%, into Eqs. ~2!

and~3!, the remaining integrals can easily be calculated, a
we obtain the following nonlinear set of equations to det
mine the Lagrangian multipliers@lk5lk($n%)#

n FIG. 4. Intrinsic viscosity as a function of the elongational ra
calculated from Eq.~19! ~solid line!. The results of the Rouse
model ~dashed line! and a computer simulation@23# ~points! are
provided for comparison. The chain length isN5100.
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(
k50

N S 2

2lk1 ė̃/2
1

1

2lk2 ė̃
D ~bn

k2bn21
k !251. ~22!

Similarly, the end-to-end distance and the radius of gy
tion are obtained via

^~rN2r0!2&5 l 2(
k50

N S 2

2lk1 ė̃/2
1

1

2lk2 ė̃
D ~bN

k 2bo
k!2,

~23!

RG
2 5

l 2

N11 (
n50

N

(
k50

N S 2

2lk1 ė̃/2
1

1

2lk2 ė̃
D ~bn

k!2. ~24!

The result of the numerical calculation of the strain rate
pendence of the mean square end-to-end distance is sho
Fig. 5 for a chain withN5100. For low and moderate strai
rates, Fig. 5 shows that the mean square end-to-end dist
is almost identical to that calculated with the simplificati
of Eq. ~7!, but for high strain rates the two curves of Fig.
exhibit significant deviations. In contrast to the approxim
solution, the end-to-end distance calculated with the
grangian multipliers satisfying the exact constraints of E
~1! approaches the completely stretched conformation w
increasing elongation rate, as it is supposed to. Despite
our model calculations do not reproduce the simulation d
exactly @16#. However, the overall agreement between
two calculations is much better than that achieved with
simplified model. Calculations of the radius of gyration a
the intrinsic viscosity yield similar results.

Depending upon the kind of the external field applied t
polymer chain, the Lagrangian multipliers are no longer c
stant along the chain contour@19#, i.e., the bond forces ar
inhomogeneously distributed along the chain. Figure 6 d
plays the values of the Lagrangian multipliers as a funct
of the position along the chain for various strain rates. T
values of the Lagrangian multipliers are symmetric with
spect to the middle of the chain. Therefore, we only pres

FIG. 5. Elongational rate dependence of the mean square
to-end distance for anN5100 chain calculated numerically with a
Lagrangian multipliers~solid curve!. The dashed curve again show
the results calculated with only one Lagrangian multiplier. Co
puter simulation data@16# are provided for comparison~points!.
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values up ton5N/2. As is obvious from Fig. 6, the Lagrang
ian multipliers increase smoothly toward the middle of t
chain. The differences between the values of the Lagrang
multipliers at the chain ends and the middle of the ch
increase with increasing strain rate, and may differ up to
order of magnitude for very high strain rates. The calcula
mean value of all the Lagrangian multipliers along the ch
yields good agreement with the single Lagrangian multip
of the simplified model for all strain rates. The fact that t
Lagrangian multipliers in the middle of the chain are larg
than those at the chain ends is in agreement with the lon
chain segments in the middle of the chain if we use only o
Lagrangian multiplier~see Fig. 3!.

IV. DYNAMICS

In Sec. III we addressed the steady state properties
chain in an elongational flow. Now we are interested in t
nonequilibrium properties of such a polymer chain. As
ready mentioned above, the steady state is not alw
reached in experiments@14,15# because of the limited resi
dence time. In order to provide a theoretical description
experimental data it is necessary to know the residence
dependence of the measured quantities, such as the m
square end-to-end distance, for a given strain rate. For n
equilibrium properties, the initial chain conformation is e
pecially important, because the dynamics of the chain
pends upon that conformation@15,16#. Up to now this
behavior has only been analyzed by computer simulation
bead-spring and bead-rod models, concentrating primarily
the unraveling behavior of an initially coiled chai
@8–10,17,25,26#.

As we will demonstrate below, we are able to analyze
nonequilibrium properties of a polymer chain in an extern
field with our model. In particular, we are able to study t
approach of the steady state from any initial conformati
We will, however, only present results for initially coiled an
stretched chains, respectively. In this section we will on
use the simplified model, i.e., all Lagrangian multiplier a
set equal, because the equations are already rather com
with this simplification.

d-

-

FIG. 6. Values of the Lagrangian multipliers as a function of t
position along the chain for different strain rates. The chain leng
is N5100. Due to the symmetry, only values up toN/2 are pre-
sented
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The Hamiltonian for our model, described in Sec. III A,
given by

H5 (
n50

N pn
2

2m
1

n

b l 2 (
n51

N

~rn2rn21!21V, ~25!

where V is given by Eq.~5!. It should be noted that fo
nonequilibrium states the Lagrangian multipliern depends
not only on the strain rate, but also on time. Nown(t) has to
be determined in such a way that the constant contour le
is maintained for every flow strength at any time. Therefo
all averageŝ•••& used in this section are ensemble avera
at a given time and not time averages.

The dynamics of the polymer chain is described by
well known Langevin equation@22#. Using Hamiltonian
~25!, we obtain the followingN11 coupled equations o
motion for the positions of the mass points

z
d

dt
rn5

2n~ t !

b l 2
~rn111rn2122rn!1zkrn1Gn~ t !,

~26!

whereGn(t) is a Gaussian distributed random force~white
noise!. A normal mode transformation according to

rn~ t !5A 2

N11(
k50

N

xk~ t !cosF kp

N11 S n1
1

2D G ~27!

leads toN11 uncoupled equations for the amplitudesxk(t):

zẋk5F2
4n~ t !

b l 2 S 12cos
kp

N11D1zkGxk1G̃k . ~28!

The correlations of the transformed random forcesG̃k can
easily be calculated and we obtain

^G̃k~ t !&50,

^G̃k
a~ t !G̃m

b ~ t8!&52zkBTdkmdabd~ t2t8!, a,bP$x,y,z%.
~29!

With the solution of Eq.~28! for the amplitudesx, the en-
semble averages of the end-to-end distance and the radi
gyration can be calculated according to the following eq
tions:

^@r N,a~ t !2r 0,a~ t !#2&5
8

N11 (
k,m51,odd

N

^xk
a~ t !xm

a ~ t !&

3cos
kp

2~N11!
cos

mp

2~N11!
,

~30!

RG,a
2 5

1

N11 (
k51

N

^xk
a~ t !xk

a~ t !&.

The equation to determine the Lagrangian multiplier is giv
by
th
,
s

e

of
-

n

2(
k51

N

^xk~ t !•xk~ t !&S 12cos
kp

N11D5Nl2. ~31!

The solution of the differential equation~28! is given by

xk
a~ t !5expS 2E

t0

t

@tk
a~ t8!#21dt8D Fxk

a~ t0!

1
1

zEt0

t

dt8G̃k
a~ t8!expS E

t0

t8
@tk

a~ t9!#21dt9D G ,
~32!

with

tk
a~ t !5zF4n~ t !

b l 2 S 12cos
kp

N11D2zkaaG21

. ~33!

As necessary, the steady state properties~i.e., n is indepen-
dent of time, calculated using the above expressions! yield
exactly the results presented in Sec. III A.

The equations for the Lagrangian multiplier~4! and the
amplitudesxk form a nonlinear set of equations, which ha
to be solved simultaneously. A closed solution of integ
~32!, however, cannot be given. Hence, we use the follow
iteration scheme for an approximate solution: For sufficien
small Dt5t2t0, the integral over the inverse of the rela
ation time can be approximated by* t0

t tk
a(t8)21dt8

'tk
a(t0)21(t2t0). Amplitudes~32! are then given by

xk
a~ t !5xk

a~ t0!expS 2
t2t0

tk
a~ t0!

D 1
1

zEt0

t

dt8G̃k
a~ t8!

3expS 2
t2t8

tk
a~ t0!

D . ~34!

The iteration scheme converges in the limitt2t0→0. With
this approximate solution the following correlations for th
amplitudesxk

a(t) are obtained:

^xk
a~ t̃ !&5^xk

a~ t̃ 0!&expS 2
t̃ 2 t̃ 0

t̃k
a~ t̃ 0!

D ,

^xk
a~ t̃ !xm

a ~ t̃ !&5^xk
a~ t̃ 0!xm

a ~ t̃ 0!&

3expF2~ t̃ 2 t̃ 0!S 1

t̃k
a~ t̃ 0!

1
1

t̃m
a ~ t̃ 0!

D G
1 t̃k

a~ t̃ 0!dkmF12expS 22
t̃ 2 t̃ 0

t̃k
a~ t̃ 0!

D G .

~35!

In the equations we introduced the scaled timet̃ 5t/t and
relaxation timet̃k

a5tk
a/t, respectively, wheret is defined in

Eq. ~12!. The above correlations together with Eq.~31! pro-
vide an iterative solution of the problem, where the iterati
process is as follows: First we calculate the Lagrangian m
tiplier @Eq. ~31!# for a given time using Eq.~35!. In the next
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step all relevant averages, such as the end-to-end distan
the radius of gyration, are calculated for the same time.
nally, the time is increased by one step (t̃→ t̃ 1D t̃ ), and the
Lagrangian multiplier is calculated again. This procedure
repeated until the stationary state is reached. It should
noted that the dynamics of the system depends on the in
conformation of the polymer chain@xk

a(t0) appears in the
correlations#. Hence in the first step of our iteration schem
the amplitudesxk

a(t0) at starting time are required. Thes
amplitudes are obtained from the initial chain positions us
the following equation:

xk
a~ t̃ 0!5A 2

N11(
n50

N

r n
a~ t̃ 0!cosF kp

N11 S n1
1

2D G . ~36!

With Eq. ~36!, the initial amplitudes can be calculated f
many different chain conformations analytically.

We investigated the dynamics of chains with two distin
initial conformations, namely, initially coiled chains and in
tially rodlike chains. In each case, the iteration proced
described above worked very well. Figure 7 shows the ti
dependence of the mean square end-to-end distance fo
initially coiled chain for various strain rates. Obviously th
end-to-end distance increases with time. In agreement
the steady state results of Fig. 1, significant chain stretch

occurs above the critical strain rateė̃c'3p2/N2. The various
curves of Fig. 7 for the various strain rates display a v
similar behavior. For short times~dependent on the strai
rate! the end-to-end distance remains virtually constant.
ter a certain time, the end-to-end distance increases
sharply and approaches the stationary state value, which
pends on the strain rate, and which has been already ca
lated in Sec. III A. Moreover, Fig. 7 shows that the tim
required to reach the state state decreases with increa
strain rate.

Deeper insight into the conformational changes during
coil-stretch transition can be gained by examining the spa
components of the end-to-end distance and/or the radiu
gyration individually. Figure 8 shows the time dependence
the mean square radius of gyration together with its com
nents along thex axis (y axis! and thez axis, respectively.

FIG. 7. Mean square end-to-end-distance as a function of t
for an initially coiled chain in elongational flow (N5100). The
various curves correspond to the indicated strain rates.
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2 is approximately constant fort̃ ,5, whereas itsx and y

components decrease significantly, and thez component in-
creases by a factor of 2. Hence, the even at equilibri
asymmetric coil, with respect to the line connecting the e
points of the chain, reorients due to the flow with the ma
axis of inertia pointing along the flow direction (z direction!.
Chains close to a smooth surface in a polymer melt exhib
similar behavior@27#. For t̃ .7, the chain rapidly stretche
and deforms along thez direction, whereas the transvers
components of the radius of gyration decrease to alm
zero. Finally, the steady state conformation of the chain
reached. The end-to-end distance exhibits a similar beha

In addition, we investigated whether the deformation
the chain in the elongational flow is affine. According
Refs. @26,28#, the Henky straine f necessary to stretch
chain is given by

e f511
1

2
ln N ~37!

for an affine deformation. The Henky straine f is defined as
e f5 ėt f . Here t f is the time where the tangent to the radi
of gyration or end-to-end distance curves in Fig. 7 in t
steep increasing regime intersects the tangent to the equ
rium value. According to Eq.~37! a Henky strain of approxi-
matelye f'3.3 should be expected for theN5100 chain in
the case of an affine deformation. In our model we fi
Henky strains of about 3.3–3.5 depending on the strain r
This indicates that the chain deformations is affine for m
strain rates.

We now examine the time dependence of the end-to-
distance for an initially fully stretched chain. Figure 9 show
that the end-to-end distance decreases monotonically
time. Depending on the strain rate, the chain relaxes, star
at the fully stretched state, to a coiled configuration for lo
strain rates and partially or almost fully stretched configu
tions for medium and high strain rates. The end-to-end d
tances corresponding to this configuration remain constan
time, indicating thermodynamic equilibrium. Similar to th
case of the initially coiled chain the time to reach equili

e FIG. 8. Radius of gyration~dashed curve! with its components
parallel ~dotted curve! and perpendicular~solid curve! to the
stretching direction.
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rium decreases with increasing strain rate. It should be no
that the equilibrium value of the end-to-end distance is si
lar to that calculated in Sec. III A or to the value for th
initially coiled chain. Thus we do not find any strain ra
dependence of the end-to-end distance on the initial confi
ration of the chain at thermodynamic equilibrium. Calcu
tions with other initial configurations, such as folded chai
exhibit similar results, and again show no dependence on
steady state properties on the specific initial conformatio

V. CONCLUSION

We have analyzed the steady state properties as we
the nonequilibrium dynamic behavior of a polymer chain

FIG. 9. Decrease of the mean square end-to-end distance
time for different strain rates of an initially fully stretched cha
(N5100).
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an elongational flow using a finite extensible bead spr
model. The finite extensibility of the chain is achieved
forcing all the mean square distances between succes
points along the chain to assume a constant value. Th
constraints are taken into account in the solution of the eq
tions of motion by Lagrangian multipliers.

The steady state properties are calculated analytically
a simplified model, where all the Lagrangian multipliers a
equal, as well as numerically for the full problem. Dependi
on the flow strength, the magnitude of the Lagrangian m
tipliers, and hence the force in a particular bond, depe
significantly on its position along the chain.

A comparison of the mean square end-to-end distance
tained from our model with computer simulations for th
viscosity exhibits good agreement. This demonstrates
our model captures the main features of polymer chains
posed to an elongational flow.

The investigation of the dynamical behavior of the cha
shows that the time to reach the steady state decreases
increasing flow strength. This holds independently of the i
tial conformation of the chain.

In the present calculations we neglected the hydro
namic interaction. Considering the qualitative agreement
tween experimental results and our model calculations,
might argue that the hydrodynamic interaction has only
minor effect on the deformation behavior of a chain. The
are, however, certain experimental findings, like the dep
dence of the relaxation time to approach equilibrium on
initial conformation, which cannot be explained within th
current approach. Such effects might be due to the hydro
namic interaction. Investigations along that line are und
way.
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